Muon Acceleration for Neutrino Factory and Muon Collider

Overview

- Cost effective schemes for accelerating muon beams for a stagable, 5 GeV Neutrino Factory (NuMAX)
 - SRF efficient design based on multi-pass (4.5) Dogbone RLA
 - Exploration of dual-use (H- and muons) linac concepts
- Reducing the cost while maintaining performance through exploring interplay between the cooling systems and the acceptance of the accelerator
- Significant groundwork (schemes and building blocks) was already laid by the IDS-NF efforts and by MASS
- Optimize RLA scheme for Higgs Factory and beyond (MC):

Alex Bogacz

- Number of passes (beam loading)
- RLA with multi-pass arcs

NuFact'15, Rio de Janeiro, Brazil, August 11, 2015

NuMAX Acceleration – Design Options

Initial 325 MHz Linac - Transverse Acceptance

Initial Linac – Longitudinal Profile

Initial Linac – Longitudinal Acceptance

325 MHz - 650 MHz Linac

325 MHz – 650 MHz Transition

Delay/Compression Chicane

5 free parameters needed to match: 2 betas + 2 alphas + disp.

Thomas Jefferson National Accelerator Facility NuFact'15, Rio de Janeiro, Brazil, August 11, 2015

Longitudinal Compression with M₅₆

Thomas Jefferson National Accelerator Facility

325 MHz - 650 MHz Linac

650 MHz FODO Linac

650 MHz FODO Linac

325 MHz - 650 MHz Linac

Dual-use Linac – muons vs protons

Linac and RLA to 5 GeV

Double Arc Chicane - Optics

FODO lattice:

90°/90° (h/v) betatron phase adv. per cell

Jefferson Lab

Arc 1 and Arc 3

Arc 1 and 3 – Optics

Switchyard – Arc 1 and 3

NuFact'15, Rio de Janeiro, Brazil, August 11, 2015

Bi-sected Linac Optics

initial phase adv/cell 90 deg. scaling quads with energy

4 meter 90 deg. FODO cells 25 MV/m, 650 MHz, 2×4-cell cavity

1-pass, 1625-2475 MeV

mirror symmetric quads in the linac

Multi-pass Linac Optics

Beam Loading

stored energy in a cavity:

$$\frac{V^2}{\omega(R/Q)}$$

J.S. Berg J.-P. Delahaye

fractional reduction in the cavity voltage:

$$\frac{\Delta V}{V} = \frac{enN\omega(R/Q)\cos\phi}{V}$$

RF gradient G defined as:

$$V = n_C G \pi c / \omega$$

$$\frac{\Delta V}{V} = \frac{enN\omega^2[(R/Q)/n_C]\cos\phi}{\pi Gc}$$

fractional voltage reduction:

$(R/Q)/n_C$	=	114 Ω
$\phi = 0$		

Particles	2×10^{12}	4×10^{12}	2×10^{12}	4×10^{12}	
Frequency	325 MHz	325 MHz	650 MHz	650 MHz	
Passes	Relative reduction (%)				
3	2	5	8	16	
5	4	8	13	26	
7	6	11	18	36	
9	7	15	23	47	

5-pass RLA 5-63 GeV

Arc 1 and Arc 3

Linac - Bisected Optics

Multi-pass Linac - Bisected Optics

Arc Optics – Longitudinal Distortion

Thomas Jefferson National Accelerator Facility

Multi-pass Arc Muon RLA

Single- vs Multi-pass Droplet Arcs

TeV scale MC – Rapid Cycling Synchrotron

- Pulse a synchrotron very rapidly as beam accelerates
- First proposed by Summers in 1996
- Permits maximal passes through RF cavities with modest apertures
- Field of pulsed magnets must be generated by iron
- Would like a higher average bend field
- Interleave superconducting fixed-field and bipolar pulsed dipoles
- Acts like a dipole with average field $(B_C L_C + B_W L_W)/(L_C + L_W)$

J.S. Berg

Rapid Cycling Synchrotrons

• Beam will not remain centered in magnets

Magnets: 10 T fixed, 1.5 T pulsed

Hybrid	p_{\min}	$p_{\rm max}$	Time	Turns
	GeV/c	GeV/c	ms	
No	63	375	0.3	10
Yes	63	173	0.1	18
Yes	173	375	0.2	18
Yes	375	750	0.4	18
Yes	750	1500	0.8	18

J.S. Berg

Thomas Jefferson National Accelerator Facility

Pulsed Magnets

- Holger Witte: two-material pulsed magnet design
 - Low-loss material in back yoke
 - High saturation material for pole
 - Takeaway: pulsed magnet designs possible with non-oriented materials and acceptable losses

Summary

- Conceptual schemes for 5 GeV Neutrino Factory (a la NuMAX)
 - Scheme I SRF efficient design based on multi-pass Dogbone RLA
 - Linac (255 MeV 1.25 GeV) Longitudinal compression
 - Delay/Compression Chicane Transition from 325 to 650 MHz SRF
 - RLA (1.25 5 GeV) 4 droplet Arcs and multi-pass linac
 - Scheme II Conceptual design based on dual-use (H⁻ and muons) linac. Further compatibility studies on:
 - H⁻ dynamics in a strongly focusing solenoid based FOFO channel, e.g. effect of solenoid fringe fields on H⁻ ion stripping
- Optimized RLA scheme for Higgs Factory and beyond (MC):
 - Number of passes limited by beam loading
 - RLA with multi-pass arcs
 - TeV scale acceleration Rapid Cycling Synchrotrons

